Fish Passage Design: Climate Resilience and Vulnerability

Julie Heilman, P.E.
State Hydraulic Engineer
Fish Passage Design: Climate Resilience and Vulnerability

Design Goals:

• Accommodate the increased frequency of severe storms expected in the future as a result of a changing climate.

• Ensuring structure stability and functionality throughout the life of the asset.
Designing for Resiliency:

- **Step 1**: Design Methodology
 - (Stream Sim. or Bridge)
- **Step 2**: BFW vs 2-yr flow vs accommodating 100-yr flow
- **Step 3**: Evaluate Stream Dynamics
- **Step 4**: Assess Site Vulnerability
- **Step 5**: Design for Scour 500-yr flow
Fish Passage Design: Climate Resilience and Vulnerability

WSDOT vs WDFW:

<table>
<thead>
<tr>
<th></th>
<th>Trib to Tawes Creek</th>
<th>Grovers Creek</th>
<th>Olsen Creek</th>
<th>Gribble Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured BFW (FT)</td>
<td>7.1</td>
<td>8.8</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2040 predicted BWF (FT)</td>
<td>7.6</td>
<td>9.4</td>
<td>26.3</td>
<td>11.8</td>
</tr>
<tr>
<td>2080 predicted BFW (FT)</td>
<td>7.8</td>
<td>9.6</td>
<td>27</td>
<td>12.9</td>
</tr>
<tr>
<td>100-yr flow (CFS)</td>
<td>115</td>
<td>58.9</td>
<td>306</td>
<td>130</td>
</tr>
<tr>
<td>500-yr flow (cfs)</td>
<td>145</td>
<td>76.5</td>
<td>410</td>
<td>177</td>
</tr>
<tr>
<td>2040 predicted flow (CFS)</td>
<td>136</td>
<td>73.8</td>
<td>351</td>
<td>129</td>
</tr>
<tr>
<td>2080 predicted flow (CFS)</td>
<td>145</td>
<td>82.5</td>
<td>379</td>
<td>141</td>
</tr>
<tr>
<td>Stream-sim/bridge design (FT)</td>
<td>12</td>
<td>12.6</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>2040 Stream-sim/bridge design (FT)</td>
<td>11.1</td>
<td>13.3</td>
<td>34.7</td>
<td>17</td>
</tr>
<tr>
<td>2080 Stream-sim/bridge design (FT)</td>
<td>11.4</td>
<td>13.5</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>Final Structure Size (5 steps)</td>
<td>12-foot box culvert</td>
<td>13-foot box culvert</td>
<td>45-foot bridge</td>
<td>19-foot box culvert</td>
</tr>
</tbody>
</table>
SR 542 Anderson Creek Before
SR 542 Anderson Creek After
SR 542 Anderson Creek After
Lake Creek Before
Lake Creek After
Lake Creek After
...you can’t design for everything.
…except Resiliency
Fish Passage Design: Climate Resilience and Vulnerability

QUESTIONS?

Julie Heilman, P.E.
State Hydraulic Engineer